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Department of Physics, Queen Mary College, Mile End Road, London E l  4NS, UK 
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Abstract. It is argued that the application of the dimensional regularisation technique to 
one-loop quantum gravity calculations is ambiguous. However, for the calculation of 
on-mass-shell S-matrix elements, this ambiguity can be resolved by requiring consistency 
with results obtained from other regularisation schemes. Some discussion is also given of 
the implications of this work for recent attempts to use higher derivative Lagrangians to 
solve the renormalisability problem in quantum gravity. 

1. Introduction 

The problem of finding a renormalisable theory of gravitation has received much 
attention in recent years. Some progress was made by ’t Hooft and Veltman (1974) who 
observed that, although gravity may not be strictly renormalisable in the usual sense, it 
is in fact one-loop finite as far as on-mass-shell S-matrix elements are concerned. The 
argument went as follows. If one uses thebackground field method then the one-loop 
counterterms can only be of the form 4 - g  R2,  c g R F v R  and F g  RFUmBR F”ap. The 
coefficients in front of these counterterms are in fact irrelevant since the identity? 

d4x Jq(R ,vaPRFYaP -4R,,R””+R2) = O  (1.1) 

reduces the independent counterterms to J q  R,,RF” and J< R2.  These then both 
vanish if we impose the classical field equation 

R,, = 0 ,  (1.2) 

which is equivalent to going on mass-shell. 
’t Hooft and Veltman employed dimensional regularisation. This technique has the 

merit of leading to Green functions which satisfy the Slavnov identities obtained when 
the more conventional methods of quantum field theory are employed (Capper et a1 
1973, Capper and Ramdn Medrano 1974). However, as previous experience has 
shown, dimensional regularisation is not simply a matter of substituting n for 4 in the 
Feynman integrals. For instance, the use of the naive four-dimensional Feynman rules 
in quantum gravity leads to Green functions with finite parts which violate the Slavnov 
identities (Capper and Ramdn Medrano 1973, 1974). In fact either the graviton 

t In spaces with a non-trivial topology (such as a de Sitter space) the identity (1.1) is not valid and there is in 
any case a counterterm proportional to the Euler number. However, in this paper we only consider spaces for 
which equation (1.1) is valid, at least in four dimensions. 
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propagators or vertices must contain factors of n. Moreover, the use of four-dimen- 
sional counterterms can also give rise to unexpected anomalies and this led to the 
suggestion (Capper and Duff .1974, 1975) that one should really introduce n-dimen- 
sional counterterms. It was further shown in the paper by Deser et a1 (1976) that it is the 
natural insistence on local (rather than nonlocal) n-dimensional counterterms, even in a 
non-renormalisable theory, which gives rise to anomalies. 

We are therefore led to the conclusion that the dimension of space-time (n) should 
be used right from the beginning of the calculation as a regulating parameter in the 
sense of Speer (1968). One should then renormalise by defining the physical 
parameters of a theory (e.g., coupling constant, masses, etc) and finally let n go to 4 right 
at the end of the calculation. If the resulting Green functions are finite then we have a 
renormalisable theory. Any less committed attempt to use the dimension of space-time 
as a regulating parameter will lead to inconsistencies such as incorrect Feynman ru!es 
(which in turn lead to incorrect finite parts of scattering amplitudes) as well as problems 
of how to interpret the scalar product between vectors in multi-loop diagrams. 

At first sight it seems straightforward to apply this philosophy to show that quantum 
gravity is one-loop finite. The counterterms would seem to be of the form 

Equation (1.1) presumably generalises to soniething of the form 

I d”x JL<(RI*,,,pRI*YeP -4R,,RI*” + R2)  = (n -4) x (something), (1.4) 

which again reduces the counterterms to the form R,,R”” and R2.  Equation (1.2) is 
still the correct n-dimensional field equation and hence reduces the counterterms to 
zero. The flaw in this argument is that equation (1.4) is incorrect. As we shall see, the 
object 

F E 

does not go to zero like (n -4). 
Unfortunately the standard proofs of the vanishing of F in four dimensions appear 

to be of no value in discovering the correct form of equation (1.4). However, one could 
try expanding F in terms of the graviton field ~5,~, using for instance 

d“x JI& (RWuaaR w~~ - 4R,,R I*’ -i- R ’) (1.5) I 

g,, = 77&U + KQlCLY (1.6) 

in the hope that factors of (n - 4) might occur. In fact, there are not even any factors of 
n. Equation (1.5) written in terms of can only be seen to vanish in four dimensions 
by explicitly writing out the fields and derivatives in terms of components and doing 
integrations by parts. This is actually very messy to accomplish. The reason is that for 
the bilinear terms the identity (equation (1.1)) is true in n dimensions rather than 4. 
This is due to the fact that only four different indices occur and it is thus impossible to 
construct terms which are significantly different from those occurring in four dimen- 
sions. Hence the first non-trivial case is of third order in 41*v and is therefore very 
complicated. Fortunately, as we show in the next section, there is an equivalent identity 
to equation (1.1) in two dimensions which serves to illustrate our point. 

It is, of course, tempting to first put n equal to 4 in the integral of equation (1.3) and 
then to take the limit n --p 4. However, it is precisely such manipulations which can lead 
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to the erroneous evaluation of anomalies and, moreover, give rise to manifestly 
incorrect mathematics. The limit of a product is not in general the product of the limits. 
Evaluating equation (1.3) by first putting n equal to 4 in the integration is directly 
analogous to the following (incorrect) series of manipulations: 

( 5 + 6 + 7 + .  . . + n )  = lim- ) ( l im(5+6+7+.  . .+n) )  > (  (n  -4) rr+4 
lim - 
n - 4  ( ( n  -4) 

1 

X zero = 0. 
1 

= lim - 
(n  -4) 

(1.7) 

It is therefore important to attempt to find out in what manner the expression in 
equation (1.8) vanishes as n goes to 4. 

2. The two-dimensional Gauss-Bonnet identity 

Analogous identities to equation (1.1) exist for any even-dimensional space-time (with 
a trivial topology), and they are known as Gauss-Bonnet identities. The one appro- 
priate to two dimensions is 

It is straightforward to show the validity if equation (2.1) and, for instance, the reader 
can find a simple proof in the paper by 't Hooft and Veltman (1974). However, such 
proofs are limited to two dimensions and as such are insufficient for our purposes. What 
we need to know is how the expression 

Y =  d " x J < R  I 
goes to zero as n goes to two. One possible way of attempting to do this is by using 
equation (1.6). After integration by parts, we obtain to second order in q5,v 

The expression for Y is not obviously zero even in two dimensions, so we now examine 
particular combinations of components?, 

The q511411 contribution to Y is of the form 

The q511q522 contribution to Y is of the form 

t For simplicity, we use the notation 8' = d W Y  and a + + + + metric. 
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The q512q512 contribution to Y is of the form 

Finally, the q511q512 contribution to Y is of the form 

As can be seen, all the contributions vanish for two dimensions but only those of 
equations (2 .4)  and (2.7) vanish for n dimensions. The remainingcontribution to Y is a 
chain of terms which contracts to zero in number as n goes to two. There is no ( n  - 2 )  
factor in Y and, since the chain of terms which appears in Y consists of different 
components of n-vectors, it is impossible to sum them to get an ( n  - 2 )  factor?. The 
vanishing of Y as n goes to 2 is thus a purely discrete effect, which actually is not all that 
surprising considering the topological origin of the Gauss-Bonnet formulae. 

A similar result presumably holds for the terms cubic in 4," for the expression 

J' d"x J q  (R,,,@R - 4R,,R + R ') (2 .8)  

Since there are again no ( n  -4) factors. This remark follows from inspection of the 
equations for Rfiuup, R,, and R in terms of rzA, r;A in terms of g p A  and finally q5pA, which 
reveals that there can never occur a contracted Kronecker delta which is the only way of 
producing a factor of n (and thus possibly n - 4 ) .  

3. The Gauss-Bonnet identity in terms of tree diagrams 

Although equation (1.4) cannot contain a factor of ( n  -4), it is quite conceivable that 
scattering amplitudes might, due to the occurrence of Kronecker deltas in both the 
vertices and propagators. 

The ideal approach to our problem would be actually to calculate the one-loop 
corrections to a non-trivial graviton scattering problem using conventional Feynman 
diagrams (e.g., two graviton + two graviton scattering) and to investigate if this ampli- 
tude really is finite in four dirriensions. In practice, owing to the large number of 
complicated diagrams, this is an enormous calculation which we are at present only 
contemplating. However, as a preliminary investigation, we might ask whether the 
addition of a counterterm of the form 

I d"x J q  R,,,,R I.LYaP n - 4  ( 3 . 1 )  

t If one had a chain of terms of the form 

f ( n j = 3 + 4 + 5 +  . . . +  n for n 3 3  

= O  for n = 2 

then it would indeed be possible to sum this chain of terms to obtain 

f ( n )  = $(n -2) (n  + 3j  for n 3 2 

and hence a factor of ( n  -2) .  However, the chain of terms in equation (2 .6) ,  for instance, is not of this form 
and consists of components of n-vector rather than numbers. It cannot therefore be summed in this way. 
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contributes zero to the scattering amplitude to first order in A.  We have calculated all 
the diagrams shown in figure 1 using the computer program SCHOONSCHIP (Strubbe 
1974; further details will be given by one of the present authors (Kimber, PhD thesis in 
preparation)). The results were checked by verifying that the replacement of a 
polarisation vector E ,  by the appropriate external momentum made the total amplitude 
vanish. Despite the use of n-dimensional propagators and vertices, no factors of (n -4)  
appeared in the final amplitude. Moreover, the amplitude did not vanish even with all 
the physical constraints imposed such as massless external gravitons and momentum 
conservation. For simplicity we then went to the centre-of-mass frame and, motivated 
by arguments given in § 2, explicitly went to four dimensions and introduced all the 
individual components of the various four-vectors. The amplitude still did not vanish! 
In fact, it was only by introducing an explicit set of polarisation vectors and looking at 
each of the different helicity amplitudes that the amplitude could be shown to vanish in 
four dimensiom. Thus the vanishing of the four-dimensional amplitude is a purely 
discrete effect, analogous to that shown in § 2, and no factors of ( n  -4)  occur. 

Figure 1. Order-A contributions of the counterterm [ A / ( n  -4)]j d"x J < R ~ , , B R w Y a a  to 
graviton-graviton scattering. 

4. Conclusion 

Our results appear to show that there is no mathematically well defined value for 

lim - I dnx c g  (RF,,ooRwYDLP -4R,,RN" + Rz)  (4.1) 
n-t4 (n - 4) 

either when expressed in terms of the graviton field or S-matrix elements. Although we 
would hesitate to claim that this shows that quantum gravity is not one-loop finite, one 
ought to be able to calculate a process such as graviton-graviton scattering in n 
dimensions using conventional Feynman diagram techniques and the resulting ampli- 
tude should be unambiguously finite in the limit n + 4 .  Although we have not yet 
carried out this calculation, the results presented here indicate that is unlikely to be 
true; presumably expressions of the form (4.1) would arise and one would not have a 
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way of handling such terms. Mowever, in order to obtain consistency with other 
regularisation schemes (for a review, see, for example, De  Witt (1975)) one could adopt 
the following procedure. The scattering amplitude for a process such as graviton- 
graviton scattering is worked out using the n-dimensional vertices and propagators. The 
external legs are put on-mass-shell and the external momenta and polarisation vectors 
are restricted to four dimensions. Only after this has been done should the internal 
momenta be restricted to four dimensions. The resulting amplitude should then be 
finite. However, it must be realised that this method of taking the n + 4 limit is precisely 
analogous to equation (1.7). Although, in the context of on-mass-shell S-matrix 
elements, the prescription outlined above does appear to be self -consistent, our results 
probably have serious consequences for attempts to renormalise gravity by using 
R2-type Lagrangians (Stelle 1x8, Julve and Tonin 1978, Salam and Strathdee 1978). 
So far, in such models the J-gRw,,,pR’LYap term has been omitted from the basic 
Lagrangian (even in the context of dimensional regularisation) on the grounds that it 
can be rewritten by means of the Gauss-Bonnet formulae in terms of 
c g  R2,  J - g  R,,,R”” plus additional terms which would only contribute finite amounts 
to one-loop calculations. However, since Stelle (1977), Julve and Tonin (1978) and 
Salam and Strathdee (1978) are concerned with the renormalisation of off-mass Green 
functions (rather than the finiteness of on-mass-shell S-matrix elements) the ansatz 
outlined above cannot be applied. Thus, unless a different method of resolving the 
ambiguities discussed in this paper can be found, it would seem likely that all three 
R2-type terms are required in the n-dimensional Lagrangian for such models. To 
verify this would require the evaluation of triangle diagrams rather than the much 
simpler self-energy. 
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